References
Al Jazeera. (2014). Sunni rebels declare new ’Islamic caliphate’. Retrieved from https://www.aljazeera.com/news/middleeast/2014/06/isil-declares-new-islamic-caliphate-201462917326669749.html
Andri Signorell et mult. al. (2018). DescTools: Tools for Descriptive Statistics. Retrieved from https://cran.r-project.org/package=DescTools
Anomaly.io. (2015, December). Extracting Seasonality and Trend from Data: Decomposition Using R. Anomaly. Retrieved from https://anomaly.io/seasonal-trend-decomposition-in-r/
Bauer, P. (2018). Writing a Reproducible Paper in R Markdown (SSRN Scholarly Paper No. ID 3175518). Rochester, NY: Social Science Research Network. Retrieved from https://papers.ssrn.com/abstract=3175518
Beck, N., King, G., & Zeng, L. (2000). Improving Quantitative Studies of International Conflict: A Conjecture. American Political Science Review, 94(1), 21–35. http://doi.org/10.1017/S0003055400220078
Bergstra, J., & Bengio, Y. (2012). Random Search for Hyper-Parameter Optimization. Journal of Machine Learning Research, 13(Feb), 281–305. Retrieved from http://www.jmlr.org/papers/v13/bergstra12a.html
Bergstra, J., Bardenet, R., Bengio, Y., & Kégl, B. (2011). Algorithms for Hyper-parameter Optimization. In Proceedings of the 24th International Conference on Neural Information Processing Systems (pp. 2546–2554). USA: Curran Associates Inc. Retrieved from http://dl.acm.org/citation.cfm?id=2986459.2986743
Block, M. (2016). Applying situational crime prevention to terrorism against airports and aircrafts. Electronic Theses and Dissertations. http://doi.org/10.18297/etd/2479
Brennan, P. (2016). The detection of outbreaks in terrorist incidents using time series anomaly detection methods (PhD thesis). Institute of Technology, Tallaght. Retrieved from https://github.com/brennap3/thesis_2/blob/master/thesis.pdf
Cederman, L.-E., & Weidmann, N. B. (2017). Predicting armed conflict: Time to adjust our expectations? Science, 355(6324), 474–476. http://doi.org/10.1126/science.aal4483
Ceron, A., Curini, L., & Iacus, S. M. (2018). ISIS at its apogee: The Arabic discourse on Twitter and what we can learn from that about ISIS support and Foreign Fighters. arXiv:1804.04059 [Cs]. Retrieved from http://arxiv.org/abs/1804.04059
Chadefaux, T. (2014). Early warning signals for war in the news. Journal of Peace Research, 51(1), 5–18. http://doi.org/10.1177/0022343313507302
Chen, T., & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22Nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 785–794). New York, NY, USA: ACM. http://doi.org/10.1145/2939672.2939785
Chen, T., Tong, H., Benesty, M., & Tang, Y. (2018). Understand your dataset with Xgboost. Retrieved from https://cran.r-project.org/web/packages/xgboost/vignettes/discoverYourData.html
CIA. (2013). INTelligence: Human Intelligence. Retrieved from https://www.cia.gov/news-information/featured-story-archive/2010-featured-story-archive/intelligence-human-intelligence.html
Clauset, A., & Woodard, R. (2013). Estimating the historical and future probabilities of large terrorist events. The Annals of Applied Statistics, 7(4), 1838–1865. http://doi.org/10.1214/12-AOAS614
Colaresi, M., & Mahmood, Z. (2017). Do the robot , Do the robot: Lessons from machine learning to improve conflict forecasting , Lessons from machine learning to improve conflict forecasting. Journal of Peace Research, 54(2), 193–214. http://doi.org/10.1177/0022343316682065
Crone, M. (2017). Islamic State’s Incursion into North Africa and Sahel: A Threat to al-Qaeda? Connections, 16(1), 63–76. Retrieved from http://www.jstor.org/stable/26326471
D. Fisher, W. (1958). On Grouping for Maximum Homogeneity. Journal of the American Statistical Association - J AMER STATIST ASSN, 53, 789–798. http://doi.org/10.1080/01621459.1958.10501479
Ding, F., Ge, Q., Jiang, D., Fu, J., & Hao, M. (07AD–2017). Understanding the dynamics of terrorism events with multiple-discipline datasets and machine learning approach. PLOS ONE, 12(6), e0179057. http://doi.org/10.1371/journal.pone.0179057
Friedman, J. H. (2001). Greedy Function Approximation: A Gradient Boosting Machine. The Annals of Statistics, 29(5), 1189–1232. Retrieved from http://www.jstor.org/stable/2699986
Fujita, K., Shinomoto, S., & Rocha, L. E. C. (2016). Correlations and forecast of death tolls in the Syrian conflict. arXiv:1612.06746 [Physics, Stat]. Retrieved from http://arxiv.org/abs/1612.06746
Geddes, B. (1990/ed). How the Cases You Choose Affect the Answers You Get: Selection Bias in Comparative Politics. Political Analysis, 2, 131–150. http://doi.org/10.1093/pan/2.1.131
Gordon, A. (2007). Transient and continuant authors in a research field: The case of terrorism. Scientometrics, 72(2), 213–224. http://doi.org/10.1007/s11192-007-1714-z
Groce, A. (2018). LibGuides: Intelligence Studies: Types of Intelligence Collection. Retrieved from //usnwc.libguides.com/c.php?g=494120\&p=3381426
Gundabathula, V. T., & Vaidhehi, V. (2018). An Efficient Modelling of Terrorist Groups in India using Machine Learning Algorithms. Indian Journal of Science and Technology, 11(15). http://doi.org/10.17485/ijst/2018/v11i15/121766
Hahsler, M., Buchta, C., Gruen, B., Hornik, K., Johnson, I., & Borgelt, C. (2018, April). Arules: Mining Association Rules and Frequent Itemsets. Retrieved from https://CRAN.R-project.org/package=arules
Heger, L. L. (2010). In the crosshairs : Explaining violence against civilians (PhD thesis). UC San Diego. Retrieved from https://escholarship.org/uc/item/6705k88s
Hyndman, R. J., & Athanasopoulos, G. (2018). Forecasting: Principles and practice. OTexts. Retrieved from https://otexts.org/fpp2
Indiana University Libraries. (2007, July). Identifying Primary and Secondary Sources. Indiana University Bloomington. Retrieved from https://libraries.indiana.edu/identifying-primary-and-secondary-sources
Jacob van Veen, H., Nguyen, L., Dat, T., & Segnini, A. (2015). Kaggle Ensembling Guide | MLWave. Kaggle Ensembling Guide. Retrieved from https://mlwave.com/kaggle-ensembling-guide/
James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). Tree-Based Methods. In An Introduction to Statistical Learning (pp. 303–335). Springer, New York, NY. http://doi.org/10.1007/978-1-4614-7138-7_8
Johnson, M. K. and K. (2018). Feature Engineering and Selection: A Practical Approach for Predictive Models. Retrieved from http://www.feat.engineering/intro-intro.html
Jongman, A. J. (1988). Political Terrorism: A New Guide To Actors, Authors, Concepts, Data Bases, Theories, And Literature. Transaction Publishers.
Karthiyayini, R., & Balasubramanian, D. R. (2016). Affinity Analysis and Association Rule Mining using Apriori Algorithm in Market Basket Analysis, 6.
Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., … Liu, T.-Y. (2017). LightGBM: A Highly Efficient Gradient Boosting Decision Tree. In Advances in Neural Information Processing Systems 30 (pp. 3146–3154). Curran Associates, Inc. Retrieved from http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf
Klausen, J., Marks, C., & Zaman, T. (2016). Finding Online Extremists in Social Networks. arXiv:1610.06242 [Physics, Stat]. Retrieved from http://arxiv.org/abs/1610.06242
Klimberg, R., & McCullough, B. D. (2017). Fundamentals of Predictive Analytics with JMP, Second Edition. SAS Institute.
Liautaud, A. (2018). U.S. military presence in Africa grew again, but “we’re not at war,” top U.S. commander says. VICE News. Retrieved from https://news.vice.com/en_us/article/j5b3pb/us-military-presence-in-africa-grew-again-but-were-not-at-war-top-us-commander-says
Livera, A. M. D., Hyndman, R. J., & Snyder, R. D. (2011). Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing. Journal of the American Statistical Association, 106(496), 1513–1527. http://doi.org/10.1198/jasa.2011.tm09771
Lowenthal, M. M., & Clark, R. M. (2015). The Five Disciplines of Intelligence Collection. SAGE.
Lula, K. (2014). Terrorized into compliance: Why countries submit to financial counterterrorism (PhD thesis). Rutgers University - Graduate School - Newark. Retrieved from https://rucore.libraries.rutgers.edu/rutgers-lib/42328/
Lum, C., Kennedy, L. W., & Sherley, A. J. (2006). THE EFFECTIVENESS OF COUNTER-TERRORISM STRATEGIES A Campbell Systematic Review.
Microsoft Corporation. (2018). LightGBM Documentation. Microsoft Corporation. Retrieved from https://media.readthedocs.org/pdf/lightgbm/latest/lightgbm.pdf
Mo, H., Meng, X., Li, J., & Zhao, S. (2017). Terrorist event prediction based on revealing data. In 2017 IEEE 2nd International Conference on Big Data Analysis (ICBDA)( (pp. 239–244). http://doi.org/10.1109/ICBDA.2017.8078815
Muchlinski, D., Siroky, D., He, J., & Kocher, M. (2016/ed). Comparing Random Forest with Logistic Regression for Predicting Class-Imbalanced Civil War Onset Data. Political Analysis, 24(1), 87–103. http://doi.org/10.1093/pan/mpv024
National Consortium for the Study of Terrorism and Responses to Terrorism (START). (2016). Global Terrorism Database [Data file]. University of Maryland. Retrieved from https://www.start.umd.edu/gtd
Nawaz, M. A. (2017). How terrorism ends: The impact of lethality of terrorist groups on their longevity (PhD thesis). Retrieved from http://krex.k-state.edu/dspace/handle/2097/35788
Neunhoeffer, M., & Sternberg, S. (2018). How Cross-Validation Can Go Wrong and What to Do About it. | Marcel Neunhoeffer. Forthcoming, Political Analysis. Retrieved from http://www.marcel-neunhoeffer.com/publication/pa_cross-validation/
NIC. (2007). Nonstate Actors: Impact on International Relations and Implications for the United States. National Intelligence Council. Retrieved from https://www.dni.gov/files/documents/nonstate_actors_2007.pdf
Nielsen, D. (2016). Tree Boosting With XGBoost-Why Does XGBoost Win“ Every” Machine Learning Competition? (Master’s Thesis). NTNU.
Onuoha, F. C., & Oyewole, S. (2018). Anatomy of Boko Haram: The Rise and Decline of a Violent Group in Nigeria. Al Jazeera, 10. Retrieved from http://studies.aljazeera.net/mritems/Documents/2018/4/23/4f179351e3244e1882a6033e0bf43d89_100.pdf
Oracle. (n.d.). Oracle Enterprise Performance Management Workspace, Fusion Edition User’s Guide. Retrieved from https://docs.oracle.com/cd/E40248_01/epm.1112/cb_statistical/frameset.htm?ch07s02s03s04.html
Pafka, S. (2018, July). GBM-perf: Performance of various open source GBM implementations. Retrieved from https://github.com/szilard/GBM-perf
Pandya, P. (2018). TalkingData: EDA to Model Evaluation | LB: 0.9683 | Kaggle. Retrieved from https://www.kaggle.com/pranav84/talkingdata-eda-to-model-evaluation-lb-0-9683
Patel, P. (2009). Introduction to Quantitative Methods. Retrieved from http://hls.harvard.edu/content/uploads/2011/12/quantitative_methods.pdf
Ranstorp, M. (2006). Mapping Terrorism Research: State of the Art, Gaps and Future Direction. Routledge.
Ridgeway, G. (2007). Generalized Boosted Models: A guide to the gbm package. Update, 1(1), 2007.
Samuel, A. L. (1959). Some studies in machine learning using the game of Checkers. Ibm Journal of Research and Development, 71–105.
Schuurman, B. (2018). Research on Terrorism, 20072016: A Review of Data, Methods, and Authorship. Terrorism and Political Violence, 0(0), 1–16. http://doi.org/10.1080/09546553.2018.1439023
Shi, H. (2007). Best-first Decision Tree Learning (Thesis). The University of Waikato. Retrieved from https://researchcommons.waikato.ac.nz/handle/10289/2317
Siddique, H. (2013). Edward Snowden’s live Q&A: Eight things we learned. The Guardian. Retrieved from http://www.theguardian.com/world/2013/jun/18/edward-snowden-live-q-and-a-eight-things
Silke, A. (2001). The Devil You Know: Continuing Problems with Research on Terrorism. Terrorism and Political Violence, 13(4), 1–14. http://doi.org/10.1080/09546550109609697
Silke, A. (2004). Research on Terrorism: Trends, Achievements and Failures. Routledge.
Stockholm International Peace Research Institute. (2017). SIPRI Yearbook 2017, Summary. Retrieved from https://www.sipri.org/sites/default/files/2017-09/yb17-summary-eng.pdf
Tanner, A. (2014). Examining the Need for a Cyber Intelligence Discipline. Journal of Homeland and National Security Perspectives, 1(1), 38–48. Retrieved from https://journals.tdl.org/jhnsp/index.php/jhnsp/article/view/16
The Interagency OPSEC Support Staff. (1996). Operations Security Intelligence Threat Handbook. Federation Of American Scientists. Retrieved from https://fas.org/irp/nsa/ioss/threat96/part02.htm
Walton, O. (2011). Early warning indicators of violent conflict: Helpdesk report. Retrieved from https://researchportal.bath.ac.uk/en/publications/early-warning-indicators-of-violent-conflict-helpdesk-report
Ward Lab. (2014, May). The coup in Thailand and progress in forecasting. Predictive Heuristics. Retrieved from https://predictiveheuristics.com/2014/05/22/the-coup-in-thailand-and-progress-in-forecasting/
Xie, Y. (2016). Bookdown: Authoring Books and Technical Documents with R Markdown. CRC Press.